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MOMENTS OF FIRST-PASSAGE DISTRIBUTIONS
IN SLAB GEOMETRY

by

P. J. Brockwell and J. M. Landwehr

I. INTRODUCTION

There exists a variety of physical processes having a Markovian
character in which a particle suffers a succession of independent collisions
with atoms of the medium through which it travels. Examples are the
following: the diffuse scattering of light, where the particle is a photon;
the diffusion of neutrons; the multiple scattering of charged particles. In
connection with such processes, one is often interested in the probability
distribution of the state variables of the particles (position, velocity, wave-
length, spin, etc.) when they make first passages through some surface in
space (regardless of the times of emergence). A general stochastic theory
of such first-passage distributions has been developed by Moyal,'?'!! and
Brockwell.?> For a comprehensive account of the theory of branching pro-
cesses as applied to neutron transport theory, we refer the reader to
Mullikin.'?

The following specific transport model will be dealt with in this
report. We shall be concerned with a population of particles (for example,
neutrons), the state of an individual particle being represented by a vector
y = (x,4), where x denotes position and [ dehotes direction of motion.
(Particle speed is assumed to be essentially constant—this is the classical
one-group approximation.) We denote by Y the set of all possible indivi-
dual states and by B(Y) the Borel field of subsets of Y. The population
state space ' 1s then defined by

(e}
v=_U yn
n=o

where YR, n = 1, denotes the n-fold Cartesian product of Y with itself,
and Y° denotes the state in which the population is empty. Measurable
subsets of Y are defined to be those belonging to the o-field B(Y) generated
by the product o-fields B(YR),n=0,1,2, ... . A typical element of ¥ cor-
responding to a population of size n will be denoted by y(n)_ (We imagine
the particles to be labeled in some way so that y(“) is an ordered n-tuple.)
For a detailed account of the theory of stochastic population processes,

see Moyal.’



vior of the population of particles is gov-

We suppose that the beha
(which we assume known from quantum-

erned by the following functions
mechanical or other considerations):

1. The total cross section or inverse mean-free-path, A(x)

Given a particle with state y = (%, {), the probability that it
aveling a small distance df is r(x)dl + o(dl).

experiences a collision in tr
llision in df is o(d#).

The probability of more than one co

2.  The collision outcome distribution, {(bn}

The distribution {(Dn} is a conditional probability measure on
B(Y) x Y. More specifically, ¢, (Aly) is the probability, given that a particle
with state y experiences a collision, that exactly n particles are produced
with states yj, ..., yo such that y(ﬂ) = (yy» ---» yn) € A. Note that the col-
liding particle itself (if it survives the collision) is included among the
particles produced. For photon scattering, where only absorption or scat-
tering are possible, ¢y = 0 forn = 2. In general,

Z ¢n(Yan) — e @0(2),
n=j

where ¢o(y) is the probability that the colliding particle is absorbed.

In addition to assuming that A and {¢,} are known, we assume that
between collisions each particle experiences a change in position only
(i.e., v is constant). Moreover, we suppose that there is no interaction
between the particles themselves, only between the particles and the atoms
of the medium through which they move.

The problems we shall discuss here fall into the general class of
first-passage problems (see Moyal'®). Given a single initial particle in a
slab of thickness t (infinite in two directions), we specify its position by a
single coordinate x (0 =x =t) and its direction of motion by the cosine yu of
the angle it makes with the positive x-axis (normal to the slab faces). The
problem can be stated as follows: Given a single initial particle with
state y = (x, ), what is the probability distribution of the resulting popula-
tion of particles making first passages from the slab (the state of each
particle in this population being its state as it emerges from the slab)? If
the exterior of the slab is vacuous (so that returns to the slab are impossi-
ble), then the first-passage population is identical with the total emergent
population. We shall use the terms emergent population anmst—passage
population interchangeably.



For an arbitrary convex body with surface Z, the number of parti-
cles making first passages from the body is a random number n, and the
states of the emerging particles can be represented by an element y(n) -
(Xl' hets xn) of the population state space Y. It is useful to introduce the
generating functional (conditional on a single initial particle with state x)

GEly) = E&(y)Elya) - Elyy)

Poly) + Z fYn fﬁ()jx) -- E(yn)Pp(dys ... d!n'z)'
n=)

where £ is an arbitrary measurable function on Y such that

sup |E(y)| =1
y €Y

and Pn(A|¥) is the probability, given a single initial particle with state y,
that the state X(n) of the first-passage population satisfies Z(n) €EA. We
then obtain the following stochastic form of the Boltzmann equation (see,
for example, Moyal,!! P41, Bell,? and Brockwell!):

00 n
[ 7 - A0]G(Ely) = -2x)|@oly) + ) fn fon(dxx - agly)] [ ey,
n=1 4 i=1

. (1)

with boundary conditions

G(€|Y) = E(y) if x is on the surface Z
and p is directed outwards, (2)

The generating functional G uniquely determines (see Moyal’) a sym-
metric distribution on the measurable space (Y,B(Y)), which is just the proba-
bility distribution of the first-passage population. However, the equation
for G is difficult to solve because of its nonlinearity. Instead, we shall study
the associated moment distributions for which the Boltzmann equation is
linear.

We shall assume that ¢, n =1, 2, ..., takes the form
n
b (dyy - dynly) = I Hé(xi-ﬁ ¢ (duil 1) ax; |, (3)

i=1
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where I, is the probability that exactly n particl'es result from t?xe colli-
sion, & is the three-dimensional Dirac delta fu.nc?tlon, and d)(dy,/:t) is the
probability that a particle produced by the collision has a direction ?f
motion in the element of solid angle dy about v. In subsequent sections,

we will assume that ¢(dy|t¢) is of the form

¢(dvlp) = o(6) dv, (4)

where 6 is the angle between i and V, and that the absorption probability

$oly) is constant (equal to IIg)-

The analysis will be confined to slab geometry, so that the state y
will be represented by a pair of scalars (x, ) and A will be a function of
x only. By a simple scale transformation, we may assume without loss of

generality that A is constant.

In this report, we shall use the discrete approximation method
developed by Brockwell® to derive the equations giving the first two mo-
ments of the joint first-passage distribution for the model described above.
That is, equations will be given for the means, variances, and covariances
of the numbers of particles emerging with various states from the slab,
conditional on a single initial particle in the slab with given initial state.
In addition to calculating solutions of these equations, we shall also use
them to estimate the critical length of the slab, i.e., the smallest length
for which the mean number of emergent particles becomes infinite. (This
is one of the many possible definitions of critical length. For a discussion
of the relationship between the various definitions, see Moyal'! and
Brockwell and Moyal.®)

The discrete approximation we shall use in the analysis is presented
in Section II.

The development of the equations for the first two moments and the
solutions of these equations are given in Section III.

A computer program was written to calculate the solutions, and the
results are given for a variety of different collision outcome distributions
in Section IV. The appendix gives in detail the mathematical methods used
in the computer code to solve the equations.

II. THE BASIS OF THE DISCRETE APPROXIMATION

The icosahedral approximation developed by Brockwell? is used.
A complete discussion of this approximation is given in Chapter VI of Ref. 3
so only a summary is given here. We are concerned with scattering, ap- ,

sorption, and fission in a plane slab, infinite in two directi i
' ons and with finj
thickness t. A



The state of any particle is determined by its position and direction
of motion. (We consider only the case of particles with a single energy,
i.e., the one-group case, although there is no conceptual difficulty in the
generalization involving multiple energies. In fact, H. Greenspan (of the
ANL Applied Mathematics Division) is currently working on a computer
program using analogs of the equations developed in Section III for parti-
cles with a finite set of possible energies. His results will provide the
first- and second-moment structure for the more realistic case in which
the dependence of )\ and {¢n} on energy, or other additional state variables,
is taken into account.) The position of any particle is specified by its dis-
tance x (0 = x =t) from the left face of the slab. It is in the specification
of the direction of motion that the icosahedral approximation enters.

The essential approximation to the model described in Section I is
the following: The directions of motion of each particle are constrained to
a set of 30 unit vectors corresponding to points evenly spaced on the sur-
face of the unit sphere. That is, a particle may not travel in an arbitrary
direction, but only in directions represented by these 30 unit vectors.

The 30 vectors are chosen in the following way: A regular icosa-
hedron is oriented as in Fig. 1 so that the line joining its center to the
midpoint of one edge is in the direction of the unit vector i normal to the

slab faces (and in the direction of increasing x).
The 30 possible directions of motion are then

1‘! taken to be along the lines joining the center of

i the icosahedron to the midpoints of its edges. If
k we let {g,. sesis g,o}be the unit vectors in these
directions, then the set of scalar products
. - ay, @a; * 3z, ..., @; * 230} gives the cosines of
Fig. 1. Orientation of the {ai -2 2 -2 #i 20’8

the possible angular deflections for a particle
initially traveling in direction aj. This (unordered)
set is the same for each i(i = 1, ..., 30). This means that for any direc-
tion of motion before a collision, the set of all possible angular deflections
resulting from the collision is the same,independent of the initial direction
of motion; that is, we can define a single set of 30 possible angular deflec-

Icosahedron

tions {€;, ..., €30} which take an arbitrary initial direction 3aj into the set
{gl. yang g.,o} of all possible directions of motion. This set ks - ox €}
contains only nine distinct angles 6, ..., 64, where

cos 6; = U1, cos B9 = -uj,

cos 6; = Kj, cos B3 = -lz.

cos B3 = Hj, cos 67 = -u3,

cos B4 = U4 cos B¢ = -ly»

cos @s = Ms» (5)

11



12

and

J9st = I = =Hi0»

by = 21+ B) = -t

My = 2 ="jeni

Ha :%(ﬁ_l) = Tl

s =0 il (6)
The angles 6,, 603, .-, B8 each occur four times in the set et 5y 630}. As-

suming that the probability of a deflection through angle 6 depends only on

0, we need therefore define only nine distinct transition probabilities
(DD N 4pg, pg) corresponding to angular deflections {6,,6;, .- 99'}.
The problem of determining the p;'s from the distribution qb(dyl/._f) defined

in Eq. 3 is considered later in this section.

With the orientation of the icosahedron defined above, the cosines
of the angles between the 30 vectors representing possible directions of
motion and the positive x-axis take only nine distinct values, [y, ---» Us (=I~16)'
Mg, ---5 Mo, Where the Lj's are defined in Eq. 6. Considerable simplifica-
tion can therefore be achieved by grouping the directions of motion accord-
ing to the cosine of the angle they make with the positive x-axis. The
number a(a =1, ..., 10) will be used to denote the set of all directions of
motion whose direction cosine is [ig,. The definition must be modified
slightly for the directions 5 and 6 perpendicular to the x-axis. Direction5
consists (see Fig. 1) of the two unit vectors *k, and direction 6 consists of
the unit vectors +j. This splitting of the directions perpendicular to the
x-axis is necessary so that the process, when defined in terms of the state
variables (x, ), be Markovian. We say that a particle has state (x,a) if its
distance from the left end of the slab is x (0 = x =t), and the cosine of its
direction of motion is gy (@ =1, ..., 10).

In practice, of course, the particle can move in any direction in
space. When a particle makes a collision with an atom of the slab, it gives
rise to a random number (n =0, 1, 2, ...) of particles of the same type. As
described in Eq. 3, we shall assume that, conditional on a particle with
direction y experiencing a collision and giving rise to n particles (n = 1),
the directions of motion of the resulting particles are independently and
identically distributed with distribution ¢(dv|u), where

dyly) = o(6)av, (7)

6 is the angle between Y and i, and d¥ is an element of solid angle sur-
rounding the unit vector ¥. We must determine p;, ..., Pg corresponding to
the continuous function 0(6). Since the original vectors {aj, ..., aso} each



correspond to congruent regions of the unit sphere, the probabilities are
chosen so that

Pir=kot6;), i'=1,...,9, (8)

the constant k being determined by the normalization condition,

8
p.+4zpi+p9=l- 9)

i=2

For example, if scattering is isotropic, then 0(68) = 1/(4m), and Egs. 8 and
9 give

1
Pr =Pz = - =Py = 35

If a particle with direction of motion i (i =1, ..., 10) makes a col-
lision that results in the production of n particles (n = 1), then the direc-
tions of motion of the resulting particles are independently distributed, the
distribution depending on the direction of motion of the colliding particle.
This common distribution is specified (in the discrete model) by the
probabilities

Pij = Prob {the resulting particle emerges from the collision with
direction j, given that the colliding particle was traveling

in direction i just before the collision}.

These probabilities must satisfy the normalization condition,

10
Z T TECR WY W | P (10)
=
The probabilities Pjj depend on which of the angular deflections 6, ..., By

can bring about a transition from direction i to direction j, and this in turn

depends on the geometry of the icosahedron. For example, a transition
from direction 2 to direction 2 can occur by deflections through 8,, 6;, 6,
or 64, and consequently P,, = p; + p; + p3s + ps- The other Pjj's are found
similarly and are shown below as the matrix P in which Pjj is the jth
element of the ith row and the symbol (i, iz, ..., ip) is used as an abbre-
viation for pj + ... +Ppiy-

13
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—(1) (2222) (3333) (4444) (55) (55) (6666) (7777) (8888) (9)
(2) (1234) (2345) (2356) (46) (37) (4578) (5678) (6789) (8)
(3) (2345) (1267) (2457) (28) (46) (3568) (3489) (5678) (7)
(4) (2356) (2457) (1368) (37) (28) (2479) (3568) (4578) (6)
(5) (4466) (2288) (3377) (19) (55) (3377) (2288) (4466) (5) (115
P =1(s) (3377) (4466) (2288) (55) (19) (2288) (4466) (3377) (5)
(6) (4578) (3568) (2479) (37) (28) (1368) (2457) (2356) (4)
(7) (5678) (3489) (3568) (28) (46) (2457) (1267) (2345) (3)
(8) (6789) (5678) (4578) (46) (37) (2356) (2345) (1234) (2)
(9) (8888) (7777) (6666) (55) (55) (4444) (3333) (2222) (1)J
Note that each row contains p; and py once and each of p,, ..., pg four times.

This is because each probability p; corresponds to a particular unit vector
representing the direction of motion of the particle after the collision, and,
of the 30 possible unit vectors, exactly four correspond to each angular
deflection 6,, ..., 8. Thus Condition 9 implies Condition 10.

III. EQUATIONS FOR FIRST AND SECOND MOMENTS

In this section we develop the equations for the mean number of
particles emerging in direction o (@ = 1, ..., 4, 7, ..., 10) conditional on an
initial particle at position x (0 = x =t) within the slab and traveling in direc-
tion (B =1, ..., 10). Particles cannot emerge traveling in direction 5 or 6,
as these directions are parallel to the faces of the slab. The equations are
also derived giving the variance-covariance structure of the number of
particles emergent in direction o) and a, (OLl =1, i PN G a, =
1, ..., 4,7, ..., 10) conditional on a particle at position x (0 = x =t) and
traveling in direction B (B =1, ..., 10). The solutions of these equations
are then presented.

Denote by N = (Ny, ..., Ny, Ny, ..., Njo) the numbers of particles
making first passages from the slab 0= x=<t in directions-1; «s.,4,
7, ..., 10, respectively, and let P(N|x,v) be the probability that N particles
make first passages from the slab conditional on a single initial particle
with position x and direction cosine v. Similarly, let P(N|x, vy, ..., Vi)
denote the probability that N particles make first passages conditional on
k initial particles with position x and direction cosines Viy eeey Vi

= A T N k). It is convenient to introduce the generating
functions
o
3 n
G(x,v) = z P(g]x,v)zll...z?“zw...z{;‘o, lzil =1

nl,“-,n4,n7,...,nw=0



and
Glx,vy, ..., V) = Z P(r_l|x.v,,.4..vk)z‘,1' ...z?‘z?’.uz;’“, IziIS 1.

For clarity in writing G, we will suppress the arguments z;. Then, since
we are assuming that the particles do not interact with each other,

GRS U, < PR] = Gix,V,)...Glx, V)
The probability that a particle makes a collision in traveling a small

distance s is assumed to be Ads + o(6s), where X\ is a positive constant.
The probability of more than one collision is o(6x). By measuring all dis-

tances in units of A”!, we can assume (without loss of generality) that A = 1.

Given that a particle moving with direction cosine ¥ experiences a
collision, we assume that there is a probability m, that the particle is ab-

sorbed and probabilities my(dv,, ..., dv |v), k = 1, 2, ..., that k particles
are produced with direction cosines in dv,, ..., dvg (-1 =vj =1). In the
discrete model, v; will take one of the values g, @ = 1, ..., 10, with

probability 1.

The initial particle will either experience no collisions before leav-
ing the slab (in which case exactly one particle will emerge from the slab
with direction cosine v, or the particle will experience a first collision at
some point y within the slab. By considering these two possibilities, we
obtain the first collision equation for G(x,v):

=1(t-x) bv. t -V-l(y-x)‘-l
Glx,v) = e~V H z, Ha 4 Toe v! dy
y=x

A=,y L P FEET 10

= t 1 1 -1y -
+ Zf f f Te(dvy, «er AV |V)Gly. ). Glyvgde " ty-x),, ldy, ifv>o,
=x J=1 -1

k=1 YY (12)

x
Glx,v) = ev'x H =i""‘a+f Moe™ V™ y=x)y-1 gy
y:ﬂ

[ £ PRPE 4T, 10

% X 1 1
% ZI f f Me(dy, s AVIGly. ) Gly e X ey, v <o, (13)
k=) Y Y=0 v=3 -3

(6-,,' is defined to be one if v = u, zero otherwise.) Differentiating Eqs. 12
and 13 with respect to x, we obtain the "backward" Kolmogorov equation,

15
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i 1
v Gx,v) - Glx, ¥) = -T - Z f _/ Te(@vy .. Ve[ V)G x, v1).. G, vic)
o = o

g = 1
k=1 (14)
with boundary conditions
gey
G(x,v) = H Zy Ha i = 0 and Vs 08
ik s S S %= GER (15)

(These equations are in fact a special case of Eqs. 1 and 2:)

We now make the further assumption (in accordance with Eq. 3) that
the probability measures 7, k =1, have the form

(@, ..o, dug ) = mer(duy | Ym(d, [2). . om(dvy | ), (16)

where T is the probability that k particles are produced and

1
f m(dy;|v) = 1.
-1

The backward equation then becomes
> 3 . .
[p,a—x- l] G(x,u) = -mg - T f mdv|uwG(x,v)| , (17)
k=1 -1
with the same boundary conditions as above.

Let Mgy(x, 1) denote the expected number of particles emerging from

the slab with directiona (i.e., with direction cosine ;.ta), - SRR ER e
7, ..., 10. Then, under the assumption that Mg is bounded and
00
z kg = m o,
0
we have
Ma(x, 1) = | =2 Glx, 1)
aza £ 3 (18)
zp=1,B=1,...,4,7,...,10



Hence, from Eqs. 17 and 15,

1
[#%- 1] M, (x,p) = -m f m(dv| WMy (x,v), (19)
-1
and
M. (x,p) = 8 if x=0and u<0,
= rebe or x = t and u > 0. (20)

(In deriving Eq. 19 from Eqs. 17 and 18, we have used the fact that

[G(xr#)]ZB=1,B=1....,4,7,.. = 1

This follows from our assumption that Mg is bounded.)

The second factorial moments of the numbers of emergent particles
are obtained by a further differentiation of the generating function G. Thus,
if we define

ENgNpg afB
Saﬁ(x'#) = 1 =a'
E[Ng(Ng-1)] B =a
(assuming again that these moments are bounded), then

S plx, ) = bz—agzz_ﬁ Glx, ) " : (21)

Z)=...T24T29%...52)0%]
Provided

00

z k(k- 1)m, = m(z) <

=0

=

we then have, from Eqs. 15, 17, and 21,

1
[“Sa;- 1] Saplx, 1) = -m f (v |u)Sq gl v)
-1

.m(z){‘[l n(dvlu)Ma(x,v}{flﬂ(dv|p.)Mﬁ(x.v)}.
e -1

(22)

17
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and

Sealx, M) = 0 0 if x= 0and pel,
i or . =it andu 2 02 (23)

(Equations 22 and 23 are valid whether or not a = B.)

So far we have not fully exploited our discrete approximation in
In the discrete approximation, the

deriving the equations for Mg and Sa -
,M10)} defined in

initial direction u can take only one of the values {, ...
Section II, and the integrals with respect to the measure 7 are in fact

sums. Thus,

. 10
Il Mg (x, ) m(dv|y;) = Z Moc(x'#j)Pij'

5=

where Pjj is the probability that a particle produced at a collision travels
in direction j conditional on the colliding particle traveling in direction i
before the collision. Thus Pjj is the (i,j)th element of the matrix given

in Eq. 11. Similarly,

1 10
/ Saﬁ(X:V)W(dV,,Ui) = saﬁ(x'“j)Pij'
iy .

J=

It is now convenient to change notation slightly. We write Mg (x,1)
for Mg(x,ui) (i=1,...,10). Thus Mg(x,1) is the mean number of particles
emergent in direction a (a=1,...,4,7,..., 10), conditional on one particle
at position x (0 = x < t) traveling in direction i. The cosine of the angle
between the direction of motion i and the positive x-axis is therefore ..
Similarly, we write Saﬁ(x,i) for Sa,B(x'/“Li) (i=1, ..., 10): "Thne Eq. 19 may
be written in matrix form,

2 B e T c
My N 1 0 Ma(x,l) By e Pyag Ma(x,l)
s : .
0 HloTi -1 Mqx, 10) Pig 1.~ Py 10—J Mg(x, 10)
Sifn;vf o 1: Bem 6ok Sha watty Ma(x, 5) and Mq(x, 6) as linear functiong
o alx 1), ..., Mg(x, 4), Mg(x, 7), ..., Mg(x, 10). Doing this, and rearrang-

ing the terms, we may express Eq. 24 as



(Max, 1) ] My 1) ]

o Mabet) || Malx4)

x| M, (x,7) . My (x.7) |’ (25)
LMa(;c. 10) Ma(;c, 10)

where R is an 8 x 8 matrix which can be determined from Eq. 24. This
is a system of eight homogeneous first-order linear differential equations,
with boundary conditions given by Eq. 20. The solution is

— —

M, (x, 1)

M, (x, 4)

= eRX . ¢, (26)
Mg (x, 7)

LMa(x, 10)

where exp(Rx)is the 8 x 8 matrix defined as_

z (Rx)K/Kk!,
k=0

and c is an eight-component column vector determined by the boundary
conditions.

In fact, if we let M(x) be the 8 x 8 matrix

My, 1) oo My DMy, 1) oo Myl 1) ]

My 4) .. Myl AMy(x.4) .- Miolx. 4) b
M(x,7) ... My(x, T)Mq(x,7) ... Mo(x, 7)

M.(;;. 10) ... My(x, 10)M4(x, 10) ... M..,(.x, no)_
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then

M(x) = e (28)

where C is an 8 x 8 matrix determined by the boundary conditions. Using

the boundary conditions for x = 0 to get the lower half of C, and for x =t

to get the upper half of M(t), we have (by matrix partitioning)

IIO EnlElz ; Ci| G (29)

EZI | EZZ 0 I

En | Ee
= exp(Rt),
Ea | Ez

and each of the indicated smaller matrices above is 4 x 4. Thus, C; = Ej}
and Che= —Ei < Ep. Since Mg(x;5) and Mg(x,6) (o=15 (5§ 45 SN 08 Sete
be expressed as linear functions of the terms in M(x), the above gives a
complete solution for the mean number of particles emergent in any of the
eight possible emergent directions, conditional on one particle at an arbi-
trary position x within the slab, traveling in any of the 10 possible directions.

where

The above equations implicitly assume that the mean number of par-
ticles produced is finite. If the slab is supercritical, i.e., if the length of
the slab is such that the mean of the total number of particles produced is
infinite, then these equations will not be valid. However, this method may
be used to determine the critical length for a given m

0
&
k=0

by varying the length t of the slab, and seeing for which value of t the total
mean number of particles produced approaches infinity. This has been
done, and the results are reported in Section IV.

To find the functions Saﬁ' we now apply similar methods to those
used above. Employing the relationship between m(dv|u) and the matrix P,
we may write Eq. 22 as
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F’l‘% -1 0 saB(xl 1) pll pl 10 Saﬁ(x, l)
= -m :
8 .# i_ . . < 3
1035 Saﬁ(x, 10) Pioy -+ P 1o Saﬁ("' 10)
Faﬁ(xrl)
) : (@=1,...,4,7,...,10; B=1,...,4,7,..., 10),
Faﬁ(x- 10) (30)
10 10
where F, q(x,i) = Mg (., j)Py; ¢ ° Z Mg(x. ) * Py (i=1,...,10).

j=1 J=1

But, since us = ug = 0, we can again write Sap(x, 5) and Sgp(x, 6) as linear
functions of Saﬁ(x,i) =1 .<,4,7,.4;10). and i ,S(x'i) (i=5,6). Then,

[Sapx. 1) ] [sagx.1) ] [Vapix.1)]

e & k% %
Y aplx, 4) o o A%, 4) . Yo plx, 4) , D
ox Saﬁ(x'7) Saﬁ(x, T) VaB(x,7)

_Sa,g(;‘, 10) _Saﬁ(;(, 10)_ _v(,L ﬁ(;(, 10)_

where R is the same 8 x 8 matrix that appeared in Eq. 25, and Vg B(x, i)
incorporates m(z) and is a linear function of Falg(x, i), Fy B(x. 5), and
Fopgx.6) (i=1,..,4,7,....10).

Here we have a set of eight first-order, linear, nonhomogeneous
differential equations. The solution is analogous to the solution of a first-
order, linear, nonhomogeneous differential equation,
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—

_Sa ﬁ(x, 1 )

safbcd) | mx. +/x eRG<-Y) - Y oly) dy, (32)
Saﬁ(x,” 0

| Saplx, 10

eight-component vector given in Eq: ;51. The eight-
component vector ¢ is determined by the boundary conditions in Eq. 23. In
fact, since Sy (0) = ¢, the bottom four elements of ¢ are zeros. The top
four elements are determined using the fact that the top four elements of

where Vg ply) is the

§a.ﬁ(t) are zeros.

The covariances, variances, and correlations can then be calcu-
lated from the SaB‘s and the My's by the appropria..te form\f.las. "I"he
appendix gives the mathematical methods and details used in writing the
computer program that determines the Mgy's and the Saﬁ's.

IV. NUMERICAL RESULTS

The numerical results concerning the first- and second-moment
structure of the first-passage distribution are presented in this section.
First, however, is a discussion of the accuracy of the approximate model
used, and of the methods used to verify that the program was coded
correctly.

This model does not permit particles to take arbitrary directions
of motion within the slab; only the 30 directions corresponding to the mid-
points of the edges of an icosahedron are permitted. The question of the
accuracy of results from this model, relative both to exact results and to
results from models using different approximations, is discussed by
Brockwell,® Chapter VII, Sections 5 and 6. For problems in slab geometry
involving only scattering and absorption, exact solutions are possible in
terms of the X- and Y-functions of Chandrasekhar.” Numerical compari-
sons given in Ref. 3 show that the icosahedral approximation compares
favorably with the Gaussian quadrature approximation with n = 4 and the
spherical harmonics method with n = 3. This suggests that the icosahe-
dral approximation should give accurate results for other cases in which
the exact solutions are not known.



Internal symmetries in the model were used to verify that the coding
was done correctly, that is, that the numerical output corresponds to the
mathematical analysis. Considering the symmetry inherent in our model,
we see that Mg(x, 2) = My;_g(t-x,11-£) (0=x=<t; a=1,...,4,7,...,10;
£L=1,...,10). The output for the My's conditional on a particle at position x
was compared with the output conditional on a particle dt position t - x
(0 =x=t), and it was verified that the required symmetries did in fact hold
for the numerical output Smularly, SaB(x g) = S,ga(x E) and Sgpa(x, L) =
sn_a,,, plt-x,11- )(a-l N0y B=1,000, 47,005,110, D=x =t
=1, 10) The Sq 's were calculated for "= l, ERy
B = UB. and £=1,..,4,7, .., 10. The required symme-
tries were agam satlsfled by the numerical output.

A. Calculations of the Critical Length

We shall take the critical length t. of a slab to be the smallest
length for which the mean Eqs. 19 and 20 have no bounded nonnegative
solution; t. depends on m, the mean number of particles produced per
collision, and also upon the scattering law o(8). (We have assumed this
applies to fission products as well as to truly scattered particles; itwould
not be difficult to extend our method to the case where one angular distri-
bution applies to scattered particles and another to fission-produced par-
ticles.) Now, as we increase the slab thickness (starting from t = 0), the
mean number of emergent particles m¢y (conditional on a single initial
particle incident normally upon the slab) increases, approaching was t 4 t_.
If t is increased slightly beyond t., the mean numbers of emergent par-
ticles in some directions (as calculated from Eqs. 19 and 20 become nega-
tive. Since the difference between the smallest t giving negative means
and the largest t for which we can find large pdsitive solutions of Eqs. 19
and 20 is small, we can estimate t. fairly accurately (within the limits of
the icosahedral model) from the numerical results. This was done for two
scattering laws—isotropic scattering and Rayleigh scattering (the latter
being used primarily to give an idea of the sensitivity of the results to
deviations from isotropy).

For isotropic scattering, o(6) = l/(47r); therefore the directions of
motion immediately after a collision are uniformly distributed over the
unit sphere, and independent of the direction of motion immediately before
the collision. This scattering law is often used as a reasonable approxxma-
tion for neutron multiplication. For Rayleigh scattering, o(8) = 3(1 +cos? 8)/
(167). With this scattering law, particles emerging from a collision are
more likely to move in a forward or backward direction than perpendicular
to the direction of motion of the colliding particle. The Rayleigh scattering
law is often used when studying the passage of photons through stellar atmo-
spheres. Other scattering laws relevant to different physical situations can
be analyzed without essential modification of the computer program.

23
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Table I gives the critical length t¢ for‘ several va_lues of m flo'r
both isotropic and Rayleigh scattering. The distance tc 1is r'neas‘ure in
units of the mean free path 1/>\. No method is known that' will give the
exact value of t. for either isotropic or Rayleigh s'cattermg. (The method
of Case® can in principle be used to give any required degree of accuracy,
but the analysis becomes extremely complicated as the degree of accuracy
is increased.) However, Mullikin!? has given simple formullas that m'ay be
used to calculate upper and lower bounds for t. for isotropic scattering
and any value of m. A computer program was written to calculate these
bounds for different m, and the results are presented in columns 4 and 5
of Table I. The final two columns of Table I present critical lengths that

Case® and Mitsis® have obtained for isotropic scattering using different

approximate methods. The blanks in these two columns indicate that nu-

merical results were not reported for some values of m.

TABLE I. Dependence of the Critical Length on m (except for
column 2, all results are for isotropic scattering)

Mullikin's
te Bounds!?

m Rayleigh Isotropic Lower Upper Case® Mitsis®
1905 6.589 6.605 6.553 6.684

1710 4.214 4.233 44191 4.286 4.227 4.24
1.30 1.866 1.887 1857 1.905 1.875 1.780
1250 1.201 15221 1.199 1227 1.209

1.60 1.014 1.034 1.014 1.039 1.025 1,022
1.80 0.764 0.784 Dol W92 0.785

2.00 0.605 0.623 0.617 0.639 0.640 0.621
2.20 0.493 0.511 0.511 0.534

2.40 0.411 0.429 0.434 0.459

2:60 0.348 0.365 0.376 0.403

Our computations of te for isotropic scattering fall within
Mullikin's bounds for m =2.2. However, for m > 2.2, our t¢ is slightly
below the lower bound of Mullikin. This indicates that our model should
be reasonably accurate for moderate values of m, but for larger m, cor-
responding to smaller critical lengths, the accuracy of the approximation
decreases. Comparing the critical lengths computed by Case and Mitsis,
we see that Case's method gives a critical length outside Mullikin's bounds
for m = 2.0. However, for smaller m, the lengths are within Mullikin's
bounds. Mitsis' result for m = 1.3 is outside the bounds, but the other
lengths he reported are within the bounds. Since neither Case nor Mitsis
pr.esented values for m > 2.0, comparison between the approximations in
this range is difficult. Case's method can, in principle, be calculated to
any de.swed accuracy; however, the zeroth and first-order approximation
for whlc}} numerical results have been given depend for their accuracy upon
m - 1l being small. This assumption, added to the fact that Case's critical
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length for m = 2.0 is outside Mullikin's bounds, while our method gives
results within the bounds for m up to 2.2, suggests that our method is
more accurate than Case's for m > 2.0. Mitsis' approximation is a modifi-
cation of Case's and appears to be more accurate than Case's for large m.
The values of t: for Rayleigh scattering are close to, but always slightly
less than, the values for isotropic scattering with the same m. The dif-
ference between the two lengths stays close to 0.018 as m varies.

B. The Mean Number of Emergent Particles

From the numerical solution of Eqs. 19 and 20, we obtain the mean
number of particles Mj(x, i) emergent in any direction Kj, conditional on a
single initial particle with position x and direction y;. In the continuous
model, the mean number of particles emerging with direction cosines in
(4 +du) can be written as f(u) du, where f(u) is the mean density in
direction . The function f(u) can be estimated from the means M;(x, 1) in
the manner described in Ref. 3, p. 99.

Thus, for example, if we consider a single particle incident nor-

mally on the right face of the slab (i.e., if we take x = t, yj = -1), then the
mean density f(u), 0 = g =1, of the reflected particles is estimated by

£(1) = 3.75M,(t,-1),

£(u) = 15M;(t,-1), i = 2,3, 4,

and

I
=

£(0)

This fufiction is illustrated in

Fig. 2, where it is plotted for

t =1.1and m = 1.3, 1.4, 1.45, and
1.50; scattering is assumed to be
isotropic. As m approaches the
value for which the slab becomes
critical (m = 1.55), the mean density
begins to increase rapidly.

Fl

It is of interest to know how
the total number, m¢,¢, of emergent
particles varies with t for fixed m
and, in particular, the rate at which
mtot approaches was t tt.. This
relationship is shown (again for a

Fig. 2. The Mean Density of Particles Reflected

from a Slab of Thickness 1.1 Mean Free single initial particle normally inci-
Paths When a Single Particle Is Incident dent on one slab face) for the values
Normally on One Face m = 1.1, 1.5, 2.0, and 2.473 in

Figs.3,4,and 5. The results are for
isotropic scattering; those for Rayleigh scattering are similar. Table II
compares the results for Rayleigh and isotropic scattering m = 1.05. It
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TABLE II. The Mean Number m¢ot of Emergent Particles When the
Mean Number m of Particles per Collision Is 1.05 and
the Initial Particle Is Normally Incident on the Slab

Slab Slab

Thickness, Rayleigh Isotropic Thickness, Rayleigh Isotropic

t Scattering Scattering t Scattering Scattering

0.1 1.006 1.006 4.3 1.940 1.943
0.3 1.020 1.020 4.5 2.068 2.069
0.5 1.036 1.037 4.7 2.221 2.221
0.7 1.054 1.056 4.9 2.409 2.407
0.9 1.075 1.077 - | 2.645 2.639
1.1 1.097 $.301 5.3 2.952 2.941
53 1.122 1.126 5% 3.369 3.350
1.5 1.149 1.153 5.7 3.970 3.935
3.¥ 1.178 1.182 5.9 4.916 4.849
}:9 1.210 1.214 6.1 6.630 6.482
ol 1.244 1.248 6.3 10.702 10.249
2.3 1.280 1.285 6.5 32.992 28.389
2.5 1.320 1.325 6.55 74.04
2.7 1.364 1.369 6.587 1,640
2.9 1.411 1.416 6.589 15,013
5.l 1.463 1.468 6.589+ @
3.8 1.520 1.525 6.6 626.5
3.5 1.585 1.589 6.603 1,936
- | 1.656 1.661 6.604 9,002
3.9 1.798 1.742 6.604+ ©
4.1 1.831 1.835

shows that for small values of t, my is larger for isotropic scattering,
but for larger values of t, myy¢ is larger for Rayleigh scattering. This
phenomenon appears to occur for all values of yn and is probably due to
the fact that for thin slabs the particles resulting from the first collision
are more likely to escape from the slab in the Rayleigh case, owing to the
greater likelihood of directly forward or directly backward scattering. On
the other hand, as the slab gets thicker, there is more chance in the
Rayleigh case of establishing a large self-sustaining population of particles
moving nearly parallel to the slab faces. This would also explain the
smaller value of tc for Rayleigh scattering.

C. Calculations of the Second Moments

We now consider the second-moment structure of the first-passage
distribution. Three parameters are under consideration:

@
m =Zmrn.
n=o

the mean number of particles produced per collision;

217
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©
2
OZ = Z(n=m) Mx |2

n=o

the variance of the number of particles produced per .collision.; and t, t}.xe
length of the slab. The second-moment structure varies con51de1.'ab1y with
thegva.lues of these parameters. However, the behavior is essentially the

same for Rayleigh as for isotropic scattering.

Equations 30-32 show that the second factorial moments are of the

form
Saﬁ(x,i) = m(z)waﬁ(x,i),
2
where, for given m, wg g(x, i) is independent of 0% = m(z) + m - m". The

covariance of the numbers of particles emergent in directions @ and P is

given by
Covaﬁ(x,i) = Saﬁ(x,i) - Ma(x,i)Mﬁ(x,i), B i! a;

Covy gl 1) = S . 1) F M) - Myx, i), B = a
Hence, for fixed m, t, x, and i, the covariance matrix of the numbers of
particles emergent in the eight possible dlrectlons of motion is a linear
function of ¢%. (If m is not an integer, 0% has a positive minimum p0551ble
value, which can easily be calculated.) In particular, the variance Otot of
the total number of emergent particles is a linear function of o%; i.e.,

B ot

where £ and 7) depend only on m, t, X, and i.

To illustrate the numerical results, we shall again restrict our-
selves to isotropic scattering with a single initial particle incident normally
on one face of the slab. More precisely, we shall take x = 0 and i = 1
(recalling from Eq. 6 that yu; = 1).

If T, = 0 for n =2, the second-moment structure of the emergent

population is completely determined by the first-moment structure. In fact,

the covariance of the numbers emerging in directions a and B is expressed
in terms of the means as follows:

Covgp= -MgMg if B £ a;

CovaB: MOL-M(Z)L if g=
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We shall therefore not discuss this case any further and assume from now
on that

00

Zﬂ'n>0.

n=2

A typical example of the behavior when m < 1 is given by the case
fo. = 0.95, My = 0.05, for which m = 0.50, g = 2.1794. The mean and the
standard deviation of the number of transmitted particles both converge to
0 as t - =, however, the mean and the standard deviation of the number of
particles reflected approach nonzero limits as t = w. Figure 6 shows the
dependence of m¢,; and Olot/mtot on the
slab thickness, t. Note that although
m¢,t is a decreasing function of t, Otot

7

m¢,¢ increases to its asymptotic value.
For t = 0.25, the correlations between
emergent direction 1 and the other seven
possible emergent directions are small
in absolute value (=0.10) and negative;
all the other correlations are positive
and in the range 0.35 to 0.60. This is
due to the fact that if a particle emerges
in direction 1l there is some indication
that no collision has occurred and hence
! that no other particles emerge from the
g slab. However, if a particle emerges
s N s T T 3 3 traveling in g direction other than 1, then
SLAB THICKNESS, t (in units of mean frae poth length) a collision must have occurred and there
are probably particles emerging in dif-
Fig. 6. The Mean and the Coefficient of ferent directions. For t = 0.50, the
Vargtion of the Number of Emer- same qualitative relation exists between
USTEEER —- 0 the correlations, although all correlations
0 =2179%4 R
are smaller in absolute value. For larger
values of t, such as t = 2.5, all correlations are positive, although the cor-
relations involving direction 1 are still smaller than the others; the largest
element is 0.58. For the asymptotic case t = = (which, as far as the re-
flected particles are concerned, seems to be essentially reached when
t = 4), the correlations between directions 7, 8, 9, and 10 are all between
0.35 and 0.60.

We now turn to the case m > 1. The following describes the general
behavior of the correlations for given m and 0 as t increases from zero
to t.. For small t, the correlations are all positive, except for those in-
volving direction 1, which are negative (for the reason explained in the pre-
ceding paragraph when m < 1). As t increases, the correlations all
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increase until, for some value between 0 and tc, they are all pomee. As
t gets extremely close to tc, all the correlations approach 1. To illustrate

these effects, Tables III, IV, and V present the correlation matrices for

isotropic scattering with m =

1.5 and 0

0.9, and 1.2 (the critical length t; is 1.221).

TABLE III. Upper Half of the Correlation Matrix of the Numbers of
Particles Emerging in Directions 1, 2, 3, 4, 7, 8, 9, and 10 for
Slab Thickness t = 0.5

= 0.50; the values of t are 0.5,

1 2 3 4 7 8 9 10
1 1.0000 -0,3524 -0.3296 -0.2969 -0.3133 -0.3412 -0.3602 -0.2100
2 1.0000 0.2942 0.2697 0.2542 0.2835 0.3037 0.1778
3 1.0000 0.2575 0.2360 0.2646 0.2844 0.1667
4 1.0000 0.2100 0.2873 0.2563 0.1505
7 1.0000 0.2524 0.2651 0.1543
8 1.0000 0.2906 0.1694
9 1.0000 0.1797
10 1.0000
TABLE IV. Upper Half of the Correlation Matrix of the Numbers of
Particles Emerging in Directions 1, 2, 3, 4, 7, 8, 9, and 10 for
Slab Thickness t = 0.9
Ik 2 3 4 7 8 9 10

1 1.0000 0.3082 0.3001 0.2849 0.2575 0.2815 0.2963 0.2352

2 1.0000 0.7532 0.7105 0.6870 0.7383 0.7690 0.6087

3 1.0000 0.6903 0.6597 0.7102 0.7407 0.5866

4 1.0000 0.6155 0.6642 0.6939 0.5498

7 1.0000 0.6771 0.6990 0 5517

8 1.0000 0.7458 0.5891

9 1.0000 0.6108

10 1.0000

TABLE V. Upper Half of the Correlation Matrix of the Numbers of
Particles Emerging in Directions 1, 2, 3,4, 7,8,:9, and 10 for
Slab Thickness t = 1.2
it 2 3 4 7 8 9 10

1 1.0000 029977 0.9975 0.9972 0.9970 0.9975 0.997% 0.9965

2 1.0000 0.9989 0.9985 0.9983 0.9988 0.9990 0.9978

i 1.0000 0.9983 0.9981 0.9985 0.9988 0.9976

: 1.0000 0.9977 0.9981 0.9984 0.9972

: 1.0000 0.9983 0.9985 0.99713

g 1.0000 0.9989 0.9977

10 1.0000 0.9978

1.0000




The close resemblance between Eqs. 19 and 20 for My(x,i) and
Eqs. 22 and 23 for Saﬁ(x,i) suggests that the second moments become
infinite for the same length t; as the first moments. It is of interest to
examine how 0ot changes as m, 0, and t vary. As discussed above,
c:ot = £ +n0?, where (for fixed x and i, in particular, for the values x = 0,
i = 1, under consideration) £ and 7) depend only on m and t. The quantity
€ may be thought of as the variance due to the variability in the particle
paths, and 70? as the variance due to the variability in the number of par-
ticles produced per collision. Table VI gives the quantities £ and 7 for
several values of m and t. (We note again that for nonintegral m, there
is a smallest possible positive value of 0, which can easily be calculated.)

TABLE VI. Values of £ and 7 in the Relation 0foy = £ +70? for
a Single Particle Incident Normally on a Slab of Length t

o = 110 m = 1.50 m = 2.00
t £ n - € n t 3 n
1.00 0.0712 2.752 0.50 1.612 3.434 0.25 3.348 2.166
3.00 7.32 102.8 0.90 39.74 65.01 0.50 212 115.5
4.15 40,010 372,180 1.20 203,700 275,230 0.60 39,456 20,050

Figures 7-9 show the relationship between Otot/mtot and t for
isotropic scattering and several values of m and 0. The case m = 2.4730,
o = 1.1051, corresponds to a probability

e distribution {mn} reported for neutron fis-
sion in U?%.'® The graphs all show an in-

7+ flection point for small values of t. The
results indicate that Otot/mtot - ®as

Sl tt to; moreovar, Otot/mtot reaches the

value 1 for t much smaller than tc. Thus,
even for a slab whose length is small com-
pared with t¢, the variability in the number
HE .l of emergent particles is quite large. This
° conclusion is related to the fact that, even
o2 with no multiplication of particles (i.e.,

mn = 0 for n =2), the variance of the
number of collisions experienced by emer-
SR gent particles is large (c.f. Abu-Shumays'

=03
: and Brockwell?).
I+
The graphs corresponding to those
° L 1 5 o in Figs. 7-9 for Rayleigh scattering are
SLAB THICKNESS, ! (in units of mean free path length) similar to the curves for isotropic scatter-

i ot shown. Of course,
Fig. 7. The Coefficient of Variation of g and are n 2 E
the Number of Emergent Parti- Ctot/mtot — = in this case as t t t¢ for
cias When m =1.1 Rayleigh scattering, not the value of t. for
isotropic scattering. The similarity of the
two sets of curves indicates that the behavior of Otot/mtot is insensitive
to small changes in the scattering law.
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APPENDIX A

Mathematical Methods Used in the Computer Program

This appendix presents in detail the mathematical methods used in
the computer program to calculate the formulas for the means and the
second factorial moments; these formulas were given in Eqs. 26 and 32.

First we discuss the computation of Mg(x,i), the mean number of
particles emergent in direction a (@ = 1,...,4,7,...,10) conditional on a
particle at position x (0 =x =t) traveling in directioni (i =1,...,10). We
return to the basic Eq. 24; i.e.,

'ul_éax_ 0 M, (x, 1) l1-mP; , -mP; , ... -mP, ,, M, (x, 1)

0 *‘ws?t M, (x, 10) -mPy, , <. 1-mPyg 1 | | M, (x, 10)

Since ps = Mg = 0, we can rewrite this as Eq. 25,

Mg(x, 1) —Ma(x. l)_
Ma.(x.- 4) Ma("‘- 4) .
365 Mg (x,7) | - Mg (x,7) |
LMa(x', 10) Ma(); 10)

To determine the elements of the 8 x 8 matrix R, we use the equations

10

Z(-mpsj) * Mg(x, j) + Mg(x,5) = 0 (A.1)
j=1

and

10

Z(-mp,,j) Mg (x,§) + Mg(x,6) = 0 (a=1,...,4,7,...,10). (A.2)

=
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Therefore,

e mPs_](l - mpéb) B mp56mP6j (A 3)
Ma(X, 5) = z Ma(xx J) (1 {3 mp55)(1 = mpﬁb) - mP56mP65 '
1

j:

i#s:8

and
i i mst(l - mPss) + mPgsmPs;
Mg (%, 6) = . Mg (%, j (1-mPss)(1 - mPe) - mPsgmPes
=
j,!s,e
(a:l,...,4,7,--.,10)- (A'4)

So rij, the (i,j)th element of R, is given by

mpyj - mPys - Ys00) - P16 - %e0)
Mi

T =

(i=1,..,4,j=1,....4,ifj; for i=5,...,8and j=5, ..., 8, i and j are
replaced on the right-hand side of this equation by i+2 and j+2.)

(A-5)
o 1 - mPj; - mPjs - V(i) - mPi, - Vei)
LS
=1
i=1,...,4; for i=5,...,8, i is replaced by i+2 on the right-hand
side),
where
S mPsj(1 - mPgg) + mPsemP;
¥s0) = ] (A.6)
(1-mPgs)(1 - mPgg) - mPsgmPys
and
. mP;(l - mPss) + mPgsmPsj
Yelj) = : Lt j=1,...,4,7 0
(1 - mPss)(l - mPgg) - mPsgmPes G - A

’.I‘g calculate exp(Rt) as required in Eq. 26, we use the Jordan de-
compolsl‘tu')n of. the matrix R. If m, the mean number of particles produced
per collision, is not equal to 1, then the eight eigenvalues of R will in



general be distinct; in fact, from a certain symmetry of R, one can show
that these eigenvalues form four pairs of numbers with opposite signs. How-
ever, if m = 1, zero is a double eigenvalue of R; this double eigenvalue
causes the Jordan decomposition of R to be nondiagonal. Since this non-
diagonality complicates the computations, we exclude the case m = 1. If,
in fact, numerical results are desired for m = 1, we can perform the calcu-
lations for m = 1.0001 and m = 0.9999 and average the results, provided
the slab is not nearly critical when m = 1.0001. (For m = 1.0001 and

m = 0.9999, there will be two eigenvalues close to zero; experience with
the numerical routine JACOBI, used to calculate eigenvalues and eigen-
vectors, has indicated that it can separate these two nonzero eigenvalues
for these m, so that the diagonal Jordan decomposition can be achieved
numerically.)

Thus, letting T = [t,... t3] be the matrix of eigenvectors of R,
we have

A 0
T'RT = ; (a.8)

0 ‘Xa
where A, ..., Ay are the eight distinct eigenvalues of R. The matrices T,
T"!, and the numbers ), ..., Az may be complex. (It seems that if m < 1,

all eight eigenvalues, and thus the eigenvectors, are real; however, if

m > 1, there is always one pair of purely imaginary eigenvalues. There
are then six real eigenvectors and two other eigenvectors, complex conju-
gates of each other, with imaginary parts.) -

Since
(e o]

exp(Rt) = I + Z (Rt)I/j!,
J=%

it follows that
T-! exp(Rt)T = I + T™!RtT + TENRET 2. . .
In terms of the matrix

TR
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we can write

T-! exp(Rt)T = I +At + (At)(At)/2! + ... = exp(At);
therefore,
exp(Rt) = T exp(At)T_l‘ (A.9)
Letting
Z1
T = . ,
2
we have
exp(Rx) = exlx U5 25 oo s ekax Us, (A.10)
where
05 =k 55 f=1,...8) (A.11)

Each Uj is an 8 x 8 matrix, since tj is a column vector and r; is a row
vector. The eight matrices Uj are computed.

Now let #(x) be the 8 x 8 matrix

(MG 1) o Malx, 1) My, 1) . Myolx, 1) |
Ml(x.,4)

Ml(xr7)
LMl(,; 10) ... Myo(x, 10)

Then M(t) = exp(Rt) * M(0), where M(0) is the 8 x 8 matrix determined by
the boundary conditions. This matrix was partitioned as

C C;
0 i |l



ar}:d the solutions for C; and C, were given after Eq. 29. Thus M(x) =

e le, + ...+ e?\axza (0 =x =<t), where Z; = U; -M(0) (i=1,...,8). The
eight matrices Z;j are calculated. Now we use the fact that M, (x, 5) and
M,(x, 6) are linear combinations of the Mq(x.3) G=1,....4,7, ..., 10;
a=1,...,4,7,...,10) as given in Eqgs. A.3 and A.4. Thus, if we let M(x) be
the 10 x 8 matrix

M, (x,1) ... My(x, 1) M;(2, 1) ... Mo(x, 1)
(A.12)
M, (x, 10) ... M4(x, 10) M,(x, 10) ... Mjo(x, 10)

b )qx Xax 2
then M(x) = e Wi+...+e Wg, where the W; are all 10 x 8 matrices,
and

S
Wq(i.j) &= Zq(i.j) GSlnnriai=10. 5 84,
Wq(i+2.j) & Zq(i,j) =5 o8 451 ..., 8)
4
Wq(5.j) = Z Vs(k)Zg(k, j) + iys(kn.) Zglk.j)  (=1,....8),
=1 k=s >A.13)
4 -
Wa(6.3) = D %zglod) + . %ek+2) Qi) (=1,...8)
k=1 k=s
= A
(q ) J

and Ys(k), Y¢(k) are defined by Eqs. A.6 and A.7. The eight matrices W are
computed. These matrices completely determine the 10 x 8 matrix M(x),

which gives the mean number of particles emergent in each of the eight pos-

sible emergent directions for a particle at position x traveling in each of
the 10 possible directions of motion. The eight W's, eight U's and eight \'s
are all stored for use in the second part of the program.

Now we consider Eq. 30, the basic equation for the second factorial

moments:
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- I W L P T
Hl—aa;‘ 0 SaB(x,l) 1-mP; 'mPl,Z"‘ 'mpl,lo SCL,B(xvl)
! b 55}: SaB(x, 10) -mP,; - 1-mPo,10 || Saplx, 10)
L - L — — — -
Faﬁ(x, 1)
=)
Faﬁ(x* 10)

We recall that

10 10
Faﬁ(x,ﬂ) = kz Ma(x’k)PZk . kz Mﬁ(x’k)PEk
=1 =1

T M sy O e 0 < T et Sy (PP 1 g g Gl 155 1

The first factor can be thought of as the /th row of the matrix P multiplied
by the column vector Mg(x); writing Mg(x,£) in terms of the W's, we get

10 8 10 8
AgX ApE
Faﬁ(x,£)= Z Poy z e d Wq(k,a) . z I5E z e T W_(m, B)
k=1 q=1 m=1 r=1
(@=1,...,4, B=1,...,4, £=1, ...,10; for @ and B = a1 ae

a and f are replaced by a -2 and -2 on the right-hand side).
This equation can be written

8

8
Fy plx.£) = z z g thn)x | Xapqr(d) (A.14)
q=1

r=1



where

10 10
Xapgr(h) = ) PpcWola) = 9 PyrWelm, g)
k=1 m=]

g N B4, 8=1;...,10; for & and B =T a0
@-2 and B-2 replace a and f on the right side). (A.15)

The X's are calculated.

Next we change the form of the basic equation to that of Eq. 31, i.e.,

5506 1) | (S 1) ] [V ploe )]
d | Sqplx.4 S, alx, 4)
¥x saﬁ( | TR £ %

o g ) Saﬁ(x,'?)

Sa_B(x, 10) Saﬁ(x, 10) \/ ﬁ(x. B)J

by using the fact that us = g = 0. The 8 x 8 matrix R is the same as in
Eq. A.5, and elementary algebra shows that *

mPZ5(l - mP“) : x mP[(,mP“
(1 - mPss)(1 - mPgg) - mPsgmPgs

Va B(X,Z) = [Fa ﬁ(x,l) + Fa B(x. 5)

mP g¢(1 - mPss) + mPgsmPs F o, 6) -m(z)
. (1 - mPss)(1 - mPgg) - mPsgmPgs a p\x Ky

(x=1,...,4, p=1,...,4, £=1,...,4; similar equations hold for
B e 10, BT, 0010, and £=35,...,8). (A.16)

This can be simplified to

8
Voplx.£) = z Z U S Lol Yo pqr(l): (A.17)
q=1

=}
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where

Yo pqr(d) = { Xopqr(t) + Ks(£) * Xgpqr(5) + Ke(h) Xaﬁqr(é)}

e e SR | I T e e

and

mPgs(l - mPgg) + mPfmPgs
(1-mPss)(1 - mPgg) - mPgemPys

Ks(4) =

(£=1,...,4; for 4 =5,...,8, £ is replaced by £ +2),

mPJ(1 - mPss) + mPjsmPsg

K (00) =
ol4) (1-mPss)(1 - mPgg) - mPs¢Pes

(£=1,...,4; for £ =5,...,8, £ is replaced by £ +2).

The K's and the Y's are computed. Now the solution is

(Saﬁ.(x, 1) ]

SG,B(X’ ].0)J

Next we write exp(-yR) as

8
Z e-XSyUs,
s=1

Then the integral in Eq. A.21 can be written as

8

8 8
=0 e rs
Z Zzus'hﬁqr'/‘ o i
=1
0

8=1 q r=)

ey 10 e 1 e
for £ = 5,...,8, the £ in X andin jf is replaced by £ +2)

saﬁ(;c,z}) x 8

Bt
)

(A.18)

(A.19)

(A.20)

(A.22)



Now the reason for breaking up

f exp(-yR) * Vqply) dy
0

into the triple summation of Eq. A.22 is apparent, since

x
AgtAr-A
f e(q T S)Ydy
0

can be integrated analytically. Therefore the solution is

—Saﬁ(x, 1) 1
Saﬁ(x,4) 8 8 [ ()‘q" A - Ag)x
= exp(xR)< cap + Us - Y B B i bt L5 L
Sg plx: 7) SZ::, qz:; lZl L [ g wpy W
LSaB(x. 10)—

assuming Mg + Ap - Ag #0 (s=1,...,8, g=1,...,8; r=1,...,8); the eight-
component vector cqpis determined by the boundary condltxons Since
§aﬁ(o) = cqps the bottom four components of cqpare zeros.

»

The symmetry of directions 1, ..., 4 with directions 10,755 © shows
that the Sy p's need only be calculated for @i, ., 4 and TIrENIO ds
tﬁe symmetry relations are S, a(x, E) = S” a,n-p(t-x ll-l) and
Saﬁ(x'”‘ a(x.2) @=1,...,4,7,...,10; B = 5,4, T, 105-87= 15508
0<x=<t). Thus a complete solutlon is obtained by evaluatmg Sa,s(x l) for
.t B, 041, ...,.10, and £ =1, ...,4, 7, ..., 10 (0= x= t).

Let S(x) be the 8 x 32 matrix

—S"(x, 1) ...Sy4(x, 1)Sy7(x, 1)...5y,10(x, 1)Sz1(x, 1)...5;,10(x, 1)S33(x, 1)...54,10(x, 1) b

Sll(x' 4)

. (A.24)
Sll(xn 7)

Sy (x, 10) ... Ss,10(x, 10)
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and let Int1(x) be the 8 x 32 matrix
Int2(x)

[Int, ,(x)Int; o (x)...Int; 4(x)Int; 7(x)...Inty, 10(x)Ints 1 (x).. Inty,10(x)],

where Intaﬁ(x) is the eight-component column vector
DY U Tape | (a.25)
Z Us * Yopqr g d

Thus Intl(x) and Int2(x) are each 4 x 32 matrices. Finally, let C be the
dix 32 tnatriz

[enniess E14C17 v C€1,10€21 +-+ 94,10],

where the ¢ p's are the top four (i.e., nonzero) components of the EOLB'S
usedin Eq. A.23.

Then we have the equation

85 = sapiny) {[COJ ¥ EZSEZ;J} (A.26)

To compute C, we use the boundary conditions on S(E)ssaue Spp(t,£) = 0
(Bl 2 S B s [y il ...,4). Thus we compute

Intl(t)
Int2(t)

using Eq. A.25. Then letting

E E
exp(Rt = 11 12 :
Ea | Ep
we have

0 = Ej; - [C+Intl(t)] + E;[Int2(t)]. (A.27)

Th.erefolre, C = -EfiE,, Int2(t) - Intl(t). The 4 x 32 matrix C is computed
using this formula. Then S(x) can be calculated for arbitrary x (0 = x=<t)
using Eqs. A.26 and A.25. :



The transformations from the second factorial moments S to the
more meaningful variances, covariances, correlations, and standard devia-
tions are then made using the standard formulas.

It has been observed that the method of calculation becomes numeri-

cally unstable when t gets very close to the critical length tc (t. -t =0.001).

A similar phenomenon occurred in the nonmultiplicative case (Brockwell?)
when t becomes large (approximately seven mean free paths). However,
in the nonmultiplicative case, the range of accuracy was increased con-
siderably by considering thick slabs to be superpositions of thinner slabs
(see Ref. 3, Chapter VI, Section 5). An analogous approach could be used
to study thick slabs in the multiplicative case, but so far this approach has
not been investigated.
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LEVEL 15 ( I JAN 68)
COMPILER OPTIONS - NAME=
c

ISN 0002
ISN 0003
ISN 0004

ISN. 0005 .

ISN 0006
ISN 0007
ISN 0008
ISN 0009
ISN 0010
ISN 0011
ISN 0012
ISN 0013
ISN 0014
ISN 0015

ISN 0016
ISN 0017
ISN 0013
ISN 0019
ISN 0020
ISN 0021
ISN 0022
ISN 0023
ISN 0024
ISN 0025
ISN 0026
ISN 0027
ISN 0028
ISN 0029
ISN 0030

ISN 0031
ISN 0032
ISN 0033
ISN 0034
ISN 0035
ISN 0036
ISN 0037
ISN 0038
ISN 0039
ISN 0040
ISN €041
ISN 0042
ISN 0043
ISN 0044
ISN 0045

c
C

102

[aNaNalal

ocoo0o

104

106
107

108
109

1
2

~NOoOWUVdHwN -

APPENDIX B

Listing of Computer Program

—— " 05/360 FORTRAN H DATE 68.261/22.11.32

MAIN'UP1=00.LlNECNT=57;SOURCE:EBCDICvNOLlST,NQDECQ,
LOAD,MAP,NOEDIT, ID,NIXREF

STOCHASTIC TRANSPORT PROGRAM 11

IMPLICIT REAL*B(A-H,0-2) iR
* NGTHyMyM24MU,KAPPAS,

ES:;LngEbG Eonp, CR,  CV, CTEMP, CTINV, Do DETERM, Ellse==
€12, FACTOR, INT, INTl, [INT2, MEAN, SCONST, SMOP, THETA,
Uy, VTEMP, W, XTEMPL, XTEMP2, XXy Yy Z

DIMENSION  B2(4), COMP(10,10), CONST(3,8), CORR(8,8), _
CR(8y8)y CT(8y8)y CTEMP(8,8)y CTINVIB,8)y Dl4s4)y ELL(444),

E12(4,4)s GAM5(10), GAM6(10), INT(B,32), INTL(4,32),
INT2(44,32), KAPPA5(10)y KAPPA6(10), MEAN(10,8), MU(10),
0COV(8,32), OMEAN(1048), P(10,10)y R(B,8), RR(B,8),
RSC(8,32), SCAT(9), SCONST(8,32), SDEV(8), SML(4,32),
SMOP(8,32), T(848), THETA(8), U(B,848), VAR(4,8), VTEMP(8),
W(By1098)y XX(4y898,8,10)s VY(498489848)y 2(848,8)

FIVE = 5.0

MU(1) = 1.0 RS L

MU(2) = (DSQRT(FIVE) + 1.0)/4.0

MU(3) = 0.5

MU(4) = (DSQRT(FIVE) - 1.0)/4.0 T e

MU(5) = C.0

DO 102 T = 1,5

MU(11-1) = =MU(I)

READ (5,902) ISCAT

IF (ISCAT) 103,106,108

IF ISCAT = 0, ISUTROPIC SCATTERING; IF ISCAT = -1, RAYLEIGH

SCATTERING; IF ISCAT = +1, A DIFFERENT SCATTERING LAW IS READ IN.

SCAT(1) = 0.050

SCAT(2) = (11.0 + DSQRT(FIVE))/320.0

SCAT(3) = 1.0/32.0 L Mo v .

SCAT(4) = (11.0 - DSQRT(FIVE))/320.0

SCAT(5) = 0.0250

DO 104 I = 6,9

SCAT(I) = SCAT(10-1)

WRITE (6,835)

60 TO 109

DO 107 I=1,9 & T A

SCAT(I) = 1.0/30.0

WRITE (6,837)

Gu TO 109

READ (5,900) (SCAT(I)yI=1,9)

CONT INUE

COMPUTATIUN OF MATRIX P

P(1,1) = SCAT(1)

P(142) = 4.0%SCAT(2)

P(1y3) = 4,0%SCAT(3)

P(ly4) = 4,0%SCAT(4) =

P(2,1) = SCAT(2)

P(2,2) = SCAT(1) + SCAT(2) + SCAT(3) + SCAT(4)

P(2y3) = SCAT(2) + SCAT(3) + SCAT(4) + SCAT(5)

P(2,4) = SCAT(2) + SCAT(3) + SCAT(S5) + SCAT(6)

P(3,41) = SCAT(3)

P(352) = P(2,3]

P(3,3) = SCAT(1) + SCATU2) + SCAT(6) + SCAT(7)

P(3,4) = SCAT(2) + SCAT(4) ¢ SCAT(5) « SCA®iTI = =

Pl4y1) = SCAT(4)

Pl442) = P(244)

P(493) = P(3,4)



ISN 0046 Pl4y4) = SCAT(1) + SCAT(3) + SCAT(6) + SCAT(8)

1SN 0047 DO 110 1=7,10
ISN 0048 DO 110 J=7,10
ISN 0049 110 P(I14d) = P(11-1,11-J)
ISN 0050 P(741) = SCAT(6)
ISN 0051 P(742) = SCAT(4) + SCAT(5) ¢ SCAT(7) + SCAT(8)
ISN 0052 P(743) = SCAT(3) + SCAT(5) + SCAT(6) + SCAT(8)
ISN 0053 P(7,4) = SCAT(2) + SCAT(4) + SCAT(T) + SCAT(9)
ISN 0054 P(By1) = SCAT(T)
ISN 0055 P(By2) = SCAT(5) + SCAT(6) + SCAT(7) + SCAT(E)
ISN 0056 P(By3) = SCAT(3) + SCAT(8) + SCAT(4) + SCAT(9)
ISN 0057 P(By4) = SCAT(3) + SCAT(S5) + SCAT(6) + SCAT(8)
ISN 0058 P(9,1) = SCAT(8)
ISN 0059 P(9,2) = SCAT(6) + SCAT(7) + SCAT(B) + SCAT(9)
ISN 0060 P(9,3) = SCAT(5) + SCAT(6) + SCAT(7) + SCAT(8)
ISN 0061 P(9,4) = SCAT(4) + SCAT(S5) + SCAT(7) + SCAT(8)
ISN 0062 P(1041) = SCAT(9)
ISN 0063 P(1042) = 4,0%SCAT(8)
ISN 0064 P(1Cy3) = 4,0%SCAT(T)
ISN 0065 P(10,4) = 4.0%SCAT(6)
ISN 0066 DO 115 I=1,4
ISN 0067 00 115 J=7,10
ISN 0068 115 P(14J) = P(11-1,11-J)
ISN 0069 P(5,1) = SCAT(5)
ISN 0070 P(5,2) = 2.0%SCAT(4) + 2.0%SCAT(6)
ISN 0071 P(5,3) = 2.0%SCAT(2) + 2.0%SCAT(8)
ISN 0072 P(5,4) = 2.0%SCAT(3) + 2.C*SCAT(T7)
ISN C073 P(641) = SCAT(S)
ISN 0074 P(6y2) = 2.0%SCAT(3) + 2.0%SCAT(T)
ISN 0075 Pl6y3) = 2.0%SCAT(4) + 2.0%SCAT(6)
ISN 0076 P(by4) = 2.0%SCAT(2) + 2.0%SCAT(8)
ISN 0077 DU 120 I=5,6 N
ISN 0078 DO 120 J=7,10
ISN COT79 120 P(14d) = P(I411-J)
1SN 0080 P(1,5) = 2.0%SCAT(5)
ISN 0081 P(ls6) = P(1,5)
ISN 0082 P(2,5) = SCAT(4) + SCAT(6)
ISN 0083 P(2,6) = SCAT(3) + SCAT(7)
ISN 0084 P(3,5) = SCAT(2) + SCAT(8)
ISN 0085 P(3,6) = SCAT(4) + SCAT(6)
ISN 0086 P(4y5) = SCAT(3) + SCAT(7)
ISN 0087 Pl4y6) = SCAT(2) + SCAT(8)
ISN 0088 P(5,5) = SCAT(1) + SCAT(9)
LSN 0089 P(5,6) = 2.0%SCAT(5) . b
ISN 0090 P(6y5) = P(5,6)
ISN 0C91 P(646) = P(5,5)
ISN 0092 00 125 I=7,10
ISN 0093 DO 125 J=5,6
ISN 0094 125 P(1,J) = P(Ll1=1,4J)
ISN 0095 WRITE (6,905)
ISN 0096 WRITE (64910) ((P(I4J)yJ=1,410),1=1,10) B3 -
(i
C KEAD IN M,M2, AND NUMBER OF LENGTHS FOR THIS MEAN
&
ISN 0097 130 READ (5,680) MyM2,NUMLTH
ISN 0098 IF (M .LE. 0.0) GO TO 500
c 4 e e 3
5 COMPUTATION OF MATRIX R
ISN 0100 X DEN = (M¥P(5,5) — 1.0) *(M®P(6,6) = 1.0) — (M¥P(6,5))1%(M*P(5,6))
ISN C101 DU 140 I=1,4
ISN 0102 GAMG(1) = ((M¥P(6,5) )% (MSP(5,1)) — (M*P(6,1))*(M*P(5,5)-1.0))/DEN
ISN 0103 GAMG(1+6) = ((M¥P(6,5)) #(M¥P(5,1+46)) — (M¥P(6,146))%(MsP(5,5)=1.0)
1)/DEN
ISN 0104 GAMS (1) = ((M®P(5,6))%(M*P(6,1)) — (M*P(5,1))*(M*P(6,6)-1.0))/DEN
ISN 0105 GAMS(I+6) = (MEP(5,6)%(MEP(6,146)) — (M¥PI5,146) )% (M*P(6,6)=1.0))
1/DEN
ISN 0106 140 CONT INUE
ISN 0107 D0 150 I=1,4
ISN 0108 DO 150 J=1,4

ISN 0109 R(IyJ) = (—M¥P([,J) - M*P(I,5)%GAMS(J) - M*P(1,6)%GAMG(J))/MULT)
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ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
1SN
ISN
ISN
ISN
ISN
ISN
ISN
ISN

ISN
ISN
ISN
ISN
ISN

0110
Oolll
o112

oL13
0il4
0115
0l16
o117
0118
0119
0120
olzl
0l22

0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0137
0138
c139
014l
0l42
0143
0l44
0145
0147
0148
0149
€150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
olel
0163
0lé4
0165
0166
0167
0168
0169
o170

0171
o172
0173
0174
0175

oco0o0

ocoo

RUTydt8) =
1/MULL)
RUI+4,J) =
1MUC1+6)

R(I+4yJ%4) = (-M*P(1+6,J46)

(=MAP (1,J+6) = MEPLI,5)¥GAMS(J+6) = M¥P (1 ,6)*GAME(J+6))

(=M¥P (I+65J) — M¥PLI+6,5)¥GAMS(J) _MP([4+646)%GAM6(J) )/

= M‘P(106c5)‘GAMS(JObD—H*P(l*byé)‘GAHb

L(J+6))/MUT+6)

150 CCONTINUE
DS =

1

14 -

R(Is1) = R{IyI) + (1.0/MUCL))

R(I+4,1+4)
CUNTINUE

v

15

= R(I+4,144) + (1.0/MU(I+6)) a Rt B

WRITE (6,915)
WRITE (65975) ((R(I4J)4J=148)41=148)
00 170 I=1,8
DU 170 J=1,8
170 RR(1,d) = RUI,J) ol

COMPUTATION OF EIGENVALUES & EIGENVECTORS

KONST = 1

CALL CLOCK(T1)
CALL JACOBI
CALL CLOCK(T2)

T = 1Tl

WRITE (64945) KONST,TT

WRITE (64950)

WRITE (6,965) ((RR(IyJ)yd=1,48)41=1,8)
WRITE (64960)

WRITE (6,965) ((T(I4J)eJ=1,8),1=1,8)

IDUM = 0

(RRyT,ByKONST+8)

DO 180 I=1,7
IF (IDUM .NE.l) GO TO 171

IDUM = 0
GO TG 18C
17

-

THETA (1)

IF (DABS(RR(I,I+1)) .GE. 1.0D0-07) GO TO 174

RR(I,1)

DO 172 J=1,8
T(Jdy 1)

172 CT(ds1) =
GO TO 180

174 IF (DABS(RR(I4I)) +LE. 1.00-07) GO TO 175

THETA(IL) =

THETA(I) =

THETA(L+1)
THETA(I+1)
GO TO 176
175 THETA(I) =
THETA(I+1)

RRUI,1)

THETA(I) + (0.091.0)%¥RR(I,1+1)
RR(I+1,1+1)
THETA(I+1) + (0.0,1.0)*RR(I+1,1)

RROI,I+1)%(0.0,1.0)
= RR(I+1,1)%(0.0y1.0)

176 DO 178 J=1,8

CTlJyI) =
CT(JdsI) =
CT(JyI#1)
178 CT(Jy1+1)
IDUM = 1
180 CONTINUE

T

(Jy1)

CT(JyI) + (CaOyle0)*T(J,y1+1)

T(Js1)
CT(JyI#1) = (0.041.00%T(Jy1+1)

IF (DABS(RR(748)) «GE. 1.0D0-07) GO TO 183

THETA(8) =

RR(848)

DO 182 J=1,8
182 CT(Jy8) = TlJy8)
183 DO 184 I=1,8

DU 184 J=1,8

184 CTINV(I.J)

= CT(14J)

WRITE (64955)
WRITE (6,908) (THETA(I),1=1,8)

CHECK OF DIAGONALIZATION, AND COMPUTATION OF THE 8 U'S

CALL MATINV(CTINV,8,SDEVy04DETERM,8)
WRITE (6,960)

WRITE (64964) ((CT(I4J)yJ=1,8),1=1,8)
WRITE (64970)

ARITE (64964) ((CTINV(IyJ)sJd=148)41=1,8)
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0201
0202
0203

0204
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1SN

TSN

185

187

ocooo

150

o000

195

200

coo|

ocooo

209

210

215

220

225

[aNaNal

240

DO 185 I=1,8

DO 185 J=1,8

CR(IyJ) = R(1,J)

CALL CMTMLT (CTINV,848,CR,8,8,CTEMP)
CALL CMTMLT (CTEMP,8,8,CT,8,8,CR)
WRITE (64520) =
WRITE (64964) ((CR(I,J)yJ=1,8),1=1,8)
DO 187 I=1,8

DO 187 J=1,8

DO 187 K=1,8

UGLsJsK) = CT(JoI)*CTINV(I,K)

READ IN (NUMLTH) LENGTHS FOR THIS MEAN

KCOUNT = ¢

REAC (549C0) LENGTH

KCOUNT = KCOUNT + 1

WRITE (6,918) LENGTH

CALCULATION OF EXP(R*LENGTH)

00 195 I=1,8

DO 195 J=1,8

CR(I,J) = 0.0

DO 200 K=1,8 =y
FACTOR = CDEXP(THETA(K)*LENGTH)

DO 200 1=1,8

DO 200 J=1,8

CRUI4J) = CR(IsJ) + U(K,I,J)*FACTOR
WRITE (6,985)

WRITE (64964) ((CRIyJ)yJ=1,8),1=1,8)

CALCULATION OF EXP(R*LENGTH) USING H. G. SUBROUTINE

CALL EXMATR(RyTyLENGTHy8,CORR,CONST,SDEV)
WRITE (6,986)
WRITE (64975) ((T(I4Jd)y J=1,8),1=1,8)

CALCULATION OF CONSTANTS MATRIX

DO 210 I=1l44
DO 210 J=1,4

REAL = CR(I,J)

EL1(1,J) = REAL »
REAL = CR(I,J+4)

El2(1,J) = REAL

CONST(I44,J) = 0.0
CONST(I+4,J44) = 0.0

DU 215 1=5,8

CONST (I,1) = 1.0

CALL MATINV (El1,44B2404DETERM,4)
WRITE (64946) DETERM

WRITE (64964) ((ELL(I4J)4d=1,4)41=1,4)
DO 220 I=1.4

DO 220 J=144

CONST (14J) = E1L(I,J)

CALL CMTMLT (Ells4y4sE1244,4,0)
DO 225 I=1ly4

DO 225 J=144

CONST (I,J+4) = =D(1,J)

WRITE (6,990) SRR S S N,
WRITE (64965) ((CONST(I4J)sJ=148)s1=1,48)

CALCULATION OF MATRICES Z'S AND W'S SRS

DO 240 1=1,8
DO 240 J=1,8  _
DO 240 K=1,8
Z(IvdeK) = 0.0
DO 240 L=1,8

BN

TUlyJoK) = Z(1,JsK) + UCI4d,L)*#CONSTIL,K)
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0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249

0250
0251
0252
€253
0254
€255
0256
0257
0258
€259
0260
0261
0262
0263
0264
0265
C266
0267

0268
0269
0276
0271
0272
c273
0274
275
0276
0277
0278
0279
028C
0281
0282
0283
0284
0285
G286
0287
0288
0289

0290

0291

coo

oco0oo

coo

255

260

265
270
215
280

280

29

~

29

w

296

~

29

285

3C8

305
310

320

329

DO 275 N1=1,8

DO 270 J=1,8

pAaT250 =1y 4%
WINLyIyd) = Z(NLyIsJ)
DO 255 1=5+8
WINLy[+24J) (NLyIsJ)
AINLy5yJ) =
WINLybyd) =

DO 260 L=1:4
WINLySyd) = WINLy5yJ) + GAMS(L)*Z(NLyLyJ)

WINLybsd) WINLybyJ) + GAM6(L)*Z(NLyLyJ)
DO 265 L=5,8

WINLyS9J) = WINLy54J) + GAM5 (L#2)*¥Z(NL14LysJ)
WINLy69Jd) = WINLyO6sJ) + GAM6 (L42)*Z(NL1yLyJ)
CONT INUE

CONTINUE

READ (5,93C) X

IF (X) 285,290,290

=7
0.0
0.0

CALCULATION OF MEAN MATRIX

DO 292 I=1,10

DU 292 J=1,8

MEAN(I,J) = 0.0

DU 292 K=1,8

MEAN(IsJ) = MEAN(I,J) + (COEXP(THETA(K)*X))*W(KyI,4J)
WRITE (64935) LENGTH,X

WRITE (64937) M

D0 293 I=1,1C

DO 263 J=1,8

OMEAN(I,J) = MEAN(I,J)

WRITE (6,940)

WRITE (6,965) ((OMEAN(I,J), J=1,8),1=1,10C)
00 297 I=1,1C

D0 297 J=1,8

UMEAN(IL4J) = (0.0y—1.C)*MEAN(I,J)

WRITE (6,967)

WRITE (6,965) ((OMEAN(I4J)y J=148),1=1,10)
GU TO 28C

CALCULATION OF SECOND FACTORIAL MOMENTS
FIRST, CALCULATION OF X'S

CUNTINUE

STDEV = DSQRT(M2 + M - M*M)
WRITE (6,4840) M,STDEV

DO 308 I = 1,10

DU 308 J = 1410

CUMP(I4J) = P(I,J)

DU 310 IALPHA = 1,4

00 310 IBETA = 1,8

DU 310 IQ = 1,8
DU 310 IR = 1,3
DO 310 IL = 1,1C
XTEMP1 =

XTEMP2 .
DO 305 1K = 1,10

XTEMP1 XTEMPL + COMP(IL,IK)*W(IQyIKyIALPHA)

XTEMP2 = XTEMP2 + COMP(ILyIK)*W(IR,IK,IBETA)

XX(TALPHA, IBETA,IQyIRyIL) = XTEMP1%XTEMP2

DU 320 L=1,4

KAPPAS(L) = (M*P(Ly5)*(L.0=M*P(6,6)) + M¥P(L,6)*M*P(6,5))/DEN
KAPPA6 (L) = (M¥P(Ly5)*M*P(5,6) + M*P(L,6)*(1.0-M*P(5,5)))/DEN
DO 325 L = 5,8

KAPPAS(L) = (M¥P(L+2,5)%(1.0 -~ M¥P(646)) + M¥P(L+2,6)*%M*P(6,5))/DE

.

0.0
C.0

L

IN

KAPPAG (L) = (M¥P(L+2,5)kM¥P(5,6) + MKP(L+2,6)%(1.0-M&P(5,5)))/DEN
CALCULATION OF Y'S

KMM2 = =M2 L R
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0315
C3le
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0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
G340
€341
0342
0343
C344
0345
0346
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ocooo
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DU 335 IALPHA = 1,4
DO 335 IBETA = 1,8

DO 335 1IQ = 1,8
DO 335 IR = 1,8
DO 335 IL = 1,4

Y(IALPHA, IBETA,IQs IRy IL) = (XX(IALPHA,IBETA,IQs[RsIL) + KAPPAS(IL)

1#XX(TALPHA, IBETAs1QsIRy5) + KAPPAG(IL)*XX(IALPHA,IBETA,IQ,IR,6))*
2(RMM2/MUCIL))

335 Y(IALPHA,IBETA,IQyIR,IL#4) = (XX(IALPHA,IBETA,IQ,IR,IL+6) + KAPPAS
LOIL + 4)*XX(IALPHA,IBETA,IQyIR,5) + KAPPAG(IL + &)*XX(IALPHA,IBETA
291QyIRy 6) )*(RMM2/MU(IL+6))

CALCULATION OF INTEGRALS

DU 345 [ALPHA = 1,4
OU 345 IBETA = 1,8
DU 336 IM = 1,8
336 INT(IMyB*(IALPHA-1) + IBETA) = C.0
DO 345 IS = 1.8

DU 337 IM = 1,8
337 VIEMP(IM) = 0.0
DO 340 IQ = 1,8
DU 340 IR = 1,8

FACTOR = (CDEXP((THETA(IQ) + THETACIR) = THETA(IS))*LENGTH) - 1.0)
L/(THETA(IQ) + THETA(IR) - THETA(IS))

DU 340 IM = 1,8

340 VTEMP(IM) = VTEMP(IM) + Y(IALPHA,[BETA,IQ,IR,IM)*FACTOR
DO 344 IL = 1,8
DO 344 IM = 1,8

344 INT(ILy3%(1ALPHA=1) + IBETA) = INTUIL,8#%(IALPHA-1) ¢+ IBETA) +
LUCIS,yIL,y IM)®VTEMP(IM)

345 CONTINUE
CALCULATION OF CONSTANTS MATRIX

DU 347 1 = 144

DO 347 J 1,32
347 INT2(14J) = INTLL + 4,J)
DO 350 I = 1,8
DO 350 J = 148
350 CR(IyJ) = C.0
DO 352 K = 1,8
FACTOR = CDEXP(THETA(K)*LENGTH)
DU 352 I = 1,8 »
DO 352 J = 1,8
352 CRII4J) = CR(I,J) + ULKyI4J)*FACTOR
DO 355 I = 1.4
DO 355 J = ly4
ELL(I,J) = CR(I,J)

355 E12(1,J) = CRUI,J¢4)
CALL CMTMLT (E12,4+49INT244,32,INT1)
CALL MATINV (E11,4,B2,0,DETERM,4)
CALL CMTMLT ( Elly4y4sINTL,4,32,INT2)
DO 360 I = 1.4
DU 360 J = 1,32
SCONST(1+4,J) = 0.0
360 SCONST(I,J) = =INT2(I,J) = INT(I,J)
DO 362 I = 1,8
DO 362 J = 1432
362 RSCUI,J) = SCONST(I,J)
WRITE (6,1005)
WRITE (6410100 ((RSC(I4J)y J=1432),1=1,8)
DU 365 I=1,8
DU 365 J=1,32
365 0COV(I,J) = (0.Cy=1.0)*SCONST(I,+J)
WRITE (6,1020)
WRITE (6410100 ((0COV(I4J)s J=1432),1=1,8)

CALCULATIONS FOR ARBITRARY X

370 READ (5,930) Xx
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I[F (X) 45043754375
375 DO 385 [ALPHA = 114
DO 385 IBETA = 148
DO 376 IM = 1,8
376 INT(IMy8%(IALPHA-1) + IBETA) = 0.0

DO 385 IS = 148

DO 377 IM = 1,8 =~ b e
377 VIEMP(IM) = 0.0

DO 380 IQ = 148

DO 380 IR = 1,8

FACTOR = (CDEXP((THETA(IQ) + THETA(IR) - THETA(IS))*X) = 1.0)/(THE

LTA(1Q) + THETA(IR) - THETA(LS))
DO 380 IM = 1,8

380 VTEMP(IM) = VTEMP(IM) + V(IALPHA.IBETA'IQ'IR.IM)'FACTOR
DO 384 IL = 1,8

DO 384 IM = 1,8
384 INT(IL,8%(IALPHA-1) + IBETA) = INT(IL,8%( IALPHA-1) + IBETA) +

LUCISyILy IM)®VTEMP(IM)
385 CONTINUE

DO 3190: °L =1 Ly
DO 390 J = 1932
390 INT(I4J) = INT(I4J) # SCONST(I,J)
DO 400 [ = 1,8
DO 400 J = 1,48
400 CR(I,yJ) = 0.0
DO 405 K = 1,8 = SR
FACTOR = CUEXP(THETA(K)*X)
DU 405 I = 148
DO 405 J = 148

405 CR(I,J) = CR(I4J) + U(K,I,J)*FACTOR
CALL CMTMLT(CRy848,INT,8y32,SMOP)
WRITE (641C15) X . TRt
DU 41C I=1,8
DO 410 J=1,32
410 UCOV(I,J) = SMOP(I,J)
WRITE (6,1010) ((OCOV(IsJd)y J=1432), I=1,8)
IF (LENGTH .NE. X) GO TO 414
DO 412 I=1y4 =
DO 412 J=1,32
412 SML(I,J) = OCOV(I+4,J)
414 DO 415 I=1,8
DO 415 J=1,32
415 0COV(I,J) = (0.Cy—1.0)*SMOP(I,4J)
WRITE (6,1025)
WRITE (6,1010) ((OCOV(I4J)y J=1,432),1=1,8)
GO TO 370

CALCULATION OF VARIANCES AND CORRELATIONS

450 DO 455 I=1,4
DU 455 J=1,4
VAR(I4J) = RSC(I49%J — 8) + CONST(I,J)*(1.0=CONST(I,J))
455 VAR(ILyJ+4) = SML(5-1,37 — 9%J) + CONST(I,J+4)%(1.0-CONST(I,J+4))
WRITE (69925) ((VAR(I3J)9d=148)41=1,4)
DO 470 I=144
DO 460 IALPHA =1,4
IALP1 = IALPHA + 1
DO 460 I1BETA = JALP1,8
460 CURR(IALPHA, IBETA) = (RSC(I,8%(IALPHA-1) + IBETA) -
1 CONST(L,IALPHA)*CONST(I,IBETA))/DSQRT(VAR(I,IALPHA)*VAR(I,IBETA))
DO 465 [ALPHA = 5,7
IALP1 = TALPHA + 1
DU 465 IBETA = ITALP1,8
465 CORR(IALPHA,IBETA) = (SML(5-1,73 - B%IALPHA - IBETA) -
LCONST (I, IALPHA)*CONST(I1,IBETA))/DSQRT(VAR (1 41ALPHA) *VAR(I,IBETA))
DO 467 J=1,8
467 CURR(JyJ) = 1.0
DO 468 11=2,8
IiNl = J1 ~ 1
DO 468 J1 = 1,11M1
468 CURR(I14J1) = CORR(JL,11)
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WRITE (6,4805) 1
WRITE (64810) (VAR(IsJ), J=1,8)
DU 469 J1=1,+8
469 SDEV(JL) = DSQRT(VARI(I,J1))

WRITE (6,820)
WRITE (64922) (CONST(I,J1), J1=1,8)
WRITE (64922) (SDEV(J1), J1=1,8)
WRITE (6,815)
WRITE (64922) ((CORR(ILlyJ1)yJ1=1,8),11=1,8)
IF (I .NE. 1) GU TO 470
DO 4690 11 = 1,8
DU 4690 J1 = 1,8

4690 CURR(I1yJ1) = CORR(IL,J1)*DSQRT(VAR(I,I1)*VAR(I,J1))
WRITE (6,1030)
WRITE (64922) ((CORR(I14J1)y J1=1,8),11=1,8)

SUM1 = 0.0
SUMZ = 0.0
SUM3 = 0.0
DO 4692 11 = 1,4
DO 4692 J1 = 1,4

SUML = SUM1 + CORR(Il,J1)

SUM2 = SUM2 + CORRI(I1 # 44,J1 + 4)
4692 SUM3 = SUM3 + CORR(I1,J1+4)

SUM = SUM1 + SUM2 + 2,0%SUM3

SR = 0.0

ST = 0.0

DO 4694 J1 = 1,4

ST = ST + CONST(I,J1)
4694 SR = SR + CUNST(I,J1 + 4)

5P = SR ¢ ST

SUM1 = DSQRT(SUM1)

SUM2 = DSQRTI(SUM2)

SUM = DSQRT(SUM)

WRITE (641040) LENGTH,M,STDEV

WRITE (641035) I4SKySUM2,ST,SUML,SP,SUM
470 COUNTINUE

IF (KCUUNT .EQ. NUMLTH) GO TO 130

GU TO 19¢C

500 STOP

8C5 FURMAT (////425Xs"VARIANCES AND CORRELATIONS FOR PARTICLES WITH IN
LITIAL DIRECTIUN',13)

B10 FURMAT (/,25Xs"VARIANCES FOR PARTICLES EMERGING IN DIRECTIONS 1-4
1L AND 7-1C*y/45X48014.74/)

815 FORMAT (/,25X, "CORRELATION MATRIX'y/)

820 FORMAT (26X, 'MEANS AND STANDARD DEVIATIONS FOR PARTICLES WITH THIS
1 INITIAL DIRECTION,',y/+26X, 'EMERGENT DIRECTIONS ARE 1-4 AND 7-10,
2WITH MEANS DIRECTLY ABOVE THE STANDARD DEVIATIONS',/)

835 FORMAT (1HO,4CX,"RAYLEIGH SCATTERING'+/)

837 FORMAT (1HO,40X, " ISOTROPIC SCATTERING',/)

840 FORMAT (1HO,5X,*MEAN NUMBER OF PARTICLES PRODUCED PER COLLISION IS
1'9yF10.5, *STANDARD DEVIATION IS'yF10.54/)

880 FURMAT (10X,2F10.8,13) - N

900 FURMAT (10X,5F10.8)

902 FORMAT (I13)

905 FORMAT (1H1,40X,*MATRIX OF PROBABILITIES P(I,J)")

908 FORMAT (40X,Gl6.4)

910 FURMAT (10X,10F12.8)

915 FORMAT (40X, *MATRIX R') e —— Y %

918 FORMAT (40X, 'LENGTH IS'yF10.5)

920 FORMAT (40X, 'CHECK MATRIX')

922 FURMAT (2X,8Fl6.7)

925 FORMAT (10X,8D14.7)

930 FURMAT (FB.4)

935 FORMAT (1H1,10X,'MEAN MATRIX FOR TOTAL LENGTH =',F5.,2,' WITH PARTI
LCLE AT POSITIUN X =',F5.2/) e RPN SESESEREmETTR Y

937 FURMAT (10X, 'MEAN NUMBER OF PARTICLES PRODUCED PER COLLISSION IS*',
1F8.4,7)

940 FORMAT (10X,'ROW I REPRESENTS PARTICLE PRESENTLY TRAVELLING IN ITH
1 DIRECTION. COLUMN J REPRESENTS PARTICLE EMERGING IN DIRECTION J*
2/)

945 FURMAT (20X,'NO. UF ITERATIONS =',13,' TIME(MS) =',F8.0)
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ISN 0477
ISN 0478
ISN 0479
ISN 0480
ISN 0481
ISN 0482
ISN 0483
ISN 0484
ISN 0485
ISN 0486
ISN 0487
ISN 0488
ISN 0489

ISN 0490
ISN 0491
ISN 0492
ISN 0493
ISN 0494

ISN 0495

ISN 0496

ISN 0497

946 FORMAT (40X, "DETERMINANT IS',2016.74/)
950 FORMAT (40X, 'RETURNED MATRIX WITH EIGENVALUES'/)

955 FORMAT (40X, ' THETAS®)

960 FURMAT (40X, 'EIGENVECTOR COLUMN MATRIX'/)

964 FORMAT (2X,8D16.7/2X48D16.74/)

965 FORMAT (2X,8D16474/) . _

967 FORMAT (1HO,10X,'IMAGINARY PART OF MEAN MATRIX. SHOULD BE ZERN'/)

970 FORMAT (40Xy'INVERSE MATRIX OF EIGENVECTORS'/)

975 FORMAT (2X,8FLl6.74/)

985 FURMAT (40X, *EXP(R*LENGTH')

986 FORMAT (40Xy"EXP(R¥LENGTH) USING H. G. SUBROUTINE'/)
950 FORMAT (40X, 'CONSTANTS MATRIX'/)

10C5 FURMAT (1HL,5X,'CONSTANT MATRIX FOR SECOND FACTORIAL MOMENTS. PAR
ITICLE AT Oy I-TH ROW GIVES INITIAL OIRECTION l-4, 7-10."4/5X,"' (AL
2PHA, BETA)-TH MOMENT IN COL. B(ALPHA-1) + BETA, ALPHA = 1 TO 4 AND
3BETA = 1 TO 4 AND (7 TO 10).')

1010 FORMAT (4(2X,8016.7/)4/)

1015 FORMAT (10X, *SECOND MOMENT OUTPUT, X = ',FB8.4/)

1020 FURMAT (1HO20X,"IMAGINARY PART OF CONSTANTS MATRIX. SHOULD BE ZE
1RQ."y /)

1025 FORMAT (//,20X,"IMAGINARY PART OF SECOND FACTORIAL MOMENT OUTPUT.
1 SHOULD BE ZERD.'y//)

1030 FORMAT (//420X,'VARIANCE-COVARIANCE MATRIX FOR PARTICLE INCIDENT A

1T X = 0 TRAVELLING IN DIRECTION 1',//)

1035 FORMAT (//,20X,'FOR PARTICLE AT X = O WITH INITIAL DIRECTION® 413,/
1,9Xy 'THE MEAN NUMBER OF PARTICLES REFLECTED IS',12X,F1l6.74' WITH §
2TANDARD DEVIATION',F16.7,/,9X, 'THE MEAN NUMBER OF PARTICLES TRANSM
3ITTED IS',10X,F16.7,' WITH STANDARD DEVIATION'yF164.7,/49X, 'THE MEA
4N OF THE TOTAL NUMBER OF PARTICLES PRODUCED IS',F16.7,' WITH STAND
5ARD DEVIATION' ,F16.7,//)

1040 FORMAT(/,20Xs"THE LENGTH OF THE SLAB IS',F10.44/,20Xy *THE MEAN NUM

1BER OF PARTICLES PRODUCED PER COLLISION IS'yF10.4,' WITH STANDARD
2DEVIATION'yF10.4)
END
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